Indian Statistical Institute, Bangalore Centre. Mid-Semester Exam : Probability III(B3)

Instructor : Yogeshwaran D.

Date : February 23, 2017.

Max. points : 40.

Time Limit : 3 hours.

Answer for 40 points and questions have to be answered in full.

Give complete proofs. Please cite/quote appropriate results from class or assignments properly. You are also allowed to use results from other problems in the question paper.

- 1. Let X_n be an HMC on a finite state space E and let π denote a stationary distribution (assuming it exists). Show the following :
 - (a) Show that $\pi(x) = 0$ whenever x is a transient state. (5)
 - (b) Show that stationary distribution is unique iff there is a unique closed communication class. (5)
- 2. Let X_n be an HMC on a finite state space E. Show the following :
 - (a) There exists a state space E, a subset $A \subset E$ and $e_0, e_2 \in E$ such that $P(X_2 = e_2 | X_1 \in A, X_0 = e_0) \neq P(X_2 = e_2 | X_1 \in A)$ i.e., the Markov property does not imply that the past and future are independent given *any* information about the present. (5)
 - (b) Let $k_i^A = \mathbb{E}_i(H^A)$ where H^A is the hitting time of $A \subset E$ i.e., $H^A = \inf\{n \ge 0 : X_n \in A\}$. Show that k_i^A is the minimal solution to the following set of linear equations : (5)

$$x_i = 0, \ i \in A \ ; \ x_i = 1 + \sum_{j \notin A} P(i, j) x_j, \ i \notin A.$$

3. (Renewal Reward process): Let X_n denote the pocket money of Shyam at the end of day n. Everyday Shyam spends Rs 1 and if at the beginning of the day n he has no money his father gives him Rs Y_n where $Y_n, n \ge 1$ are i.i.d random variables with density function given by $f_j, j = 1, 2, ..., N$ i.e., $P(Y_n = j) = f_j$ and $f_1 + ... + f_N = 1$. His father gives him money only when he has no money. Show the following :

- (a) Show that X_n is an HMC on {0,..., N} and calculate its transition matrix.
- (b) What are the communication classes ? What are the transient and recurrent states ? Does a stationary distribution exist and if so, is it unique ? (5)
- (c) Calculate $E_0(T_0)$. Assuming the stationary distribution exists and it is unique, what is it ? (5)
- (d) If Z_n is the total pocket money received by Shyam as on day n, calculate $\lim_{n\to\infty} \frac{Z_n}{n}$, if it exists. (5)

The answers may depend on suitable assumptions on f_j 's and in such a case specify under what conditions on f_j 's, which properties hold. Try to cover all possible cases of f_j 's as possible.

4. Let P be an irreducible transition matrix on a finite state space E with period d. Let $u \in E$ be a state and $k \in \{0, \ldots, d-1\}$. Define A_k

 $A_k = \{ x \in E : P^{nd+k}(u, x) > 0 \text{ for some } n \in \mathbb{N} \},\$

i.e., $x \in A_k$ iff for some $n \equiv_d k^1$, $P^n(u, x) > 0$. Show the following :

- (a) If $x \in A_j, y \in A_k$ for $j, k \in \{0, \dots, d-1\}$ and $P^n(x, y) > 0$ for some n > 0, then $n \equiv_d k j$. (4)
- (b) If $x, y \in A$ such that $P^n(x, y) > 0$ for some n > 0, then there exist $j, k \in \{0, \ldots, d-1\}$ such that $x \in A_j, y \in A_k$ and $n \equiv_d k-j$. (4)
- (c) The sets A_0, \ldots, A_{d-1} partition E. (2)
- 5. Let $X_n, n \ge 0$ be an HMC on a finite state space E. Consider the *L*-step chain $Y_n = (X_n, \ldots, X_{n+L})$.
 - (a) Specify the state space of Y_n and show that Y_n is also a HMC. What is its transition matrix ? (2)
 - (b) If X_n is irreducible, is Y_n irreducible? What about the converse ? (3)
 - (c) If X_n has a stationary distribution π , show that $\tilde{pi}(x_0, \ldots, x_L) = \pi(x_0)P(x_0, x_1)\ldots P(x_{L-1}, x_L)$ is a stationary distribution for Y_n . (3)
 - (d) Let X_n be irreducible and let $f : E^{L+1} \to \mathbb{R}$. Does the limit $\frac{1}{n} \sum_{n>0} f(X_n, \dots, X_{n+L})$ exist and if it exists, what is it ? (2)

 $^{^{1}\}equiv_{d}$ stands for equivalent modulo d.